Значение коэффициента теплопроводности керамзита
Материалы, имеющие в структуре изолированные пустоты, хорошо защищают поверхность от холода. Теплопроводность керамзита зависит от размера зерна и плотности. Утеплитель немного весит, изолирует от звуков, но отличается гигроскопичностью. Материал требует дополнительной изоляции от влаги, чтобы качественно защищать здание от потерь тепла.
Описание теплопроводности
Способность утеплителя передавать энергию от нагретых слоев к частям с меньшей температурой называется теплопроводностью. Процесс обеспечивается хаотичным передвижением молекулярных частиц, его интенсивность зависит от влажности, уплотненности, размера пор.
Физический процесс проведения тепла ускоряется при большой разнице температур снаружи и внутри строения. Спонтанная передача энергии всегда протекает от более горячей среды в направлении холодного окружения и происходит до появления термодинамического равновесия.
Коэффициент теплопроводности
Чтобы численно выразить способность материала к передаче энергии, существует коэффициент теплопроводности. Показатель говорит о количестве тепла, протекающего через образец материала в заданных условиях. Испытательный эталон всегда имеет одинаковые размеры по длине, ширине и площади и проверяется при стандартной разнице температур (1 К). Коэффициент теплопередачи измеряется в Вт/м·К, что соответствует Международной системе единиц.
Название коэффициента термического сопротивления применяется в строительной области. Теплопроводность керамзита составляет 0,1 – 0,18 Вт/м·К. Качественный материал характеризуется численным показателем 0,12 – 0,17 Вт/м·К, утеплитель с такими свойствами сохраняет до 80% внутреннего тепла.
Факторы, влияющие на величину теплопроводности
Керамзит применяется в строительстве в качестве пористого насыпного утеплителя или в виде наполнителя при производстве облегченных бетонов. Гранулы получаются методом обжига глинистого сланца или глин и имеют овальную, круглую форму, иногда с острыми углами. Строительный материал производится в виде песка.
Насыпная плотность керамзита находится в диапазоне 150 – 800 кг/м3, объемный вес зависит от технологического режима при получении. Способность проводить тепло зависит от величины гранул, пористости материала и его влажноси.
Фракция керамзита
При сравнении характеристик получается вывод, что теплопроводность уменьшается с увеличением размера гранул. Средний и крупный гравий лучше использовать для изоляции ненагруженных крыш и перекрытий из дерева. Мелкозернистый керамзит применяется для облегченной стяжки пола.
Фракции керамзита устанавливаются в соответствии с нормами ГОСТ 9757 – 90:
- От 5 до 10 миллиметров определяется мелкая группа. Материал применяется для производства стеновых блоков из керамзитобетона. Наполнитель из мелких гранул используется в бетонной стяжке покрытия или перекрытия, т. к. крупные части увеличивают толщину слоя.
- От 10 до 20 мм – средняя фракция. Материал в насыпной массе хорошо изолирует от холода полы, чердачные перекрытия, применяется для утепления участков газонов и дренирования земли. Фракция редко используется в стяжках и бетонных полах, добавляется в раствор, если толщина слоя не имеет значения.
- От 20 до 40 мм – крупные гранулы. Ими утепляют теплотрассы, подвалы, полы подсобных помещений, делают изоляцию здания от шума.
Прослойки насыпного утеплителя эффективно защищают от холода, если используется одновременно 2-3 фракции. Так заполняются пустоты, увеличивается жесткость, предупреждается конвекция потоков.
Пористость
Сырье помещается в барабаны, где оно вращается и одновременно нагревается до высоких температур. В таких условиях материал вспучивается, получаются пористые гранулы, которые защищаются снаружи запекшейся коркой из глины. Большинство пустот замкнутые, перегородки между ними также содержат пустоты.
Размер пор регулируется введением цитрогипса и минеральных примесей в шихту при производстве. Добавка в количестве от 1 до 3% формирует замкнутые пустоты величиной до 1 мм. Увеличение объема присадки до 4–9% ведет к расширению пор до 1,5–2 мм, при этом число замкнутых каверн увеличивается. Количество изолированных пустот повышает теплозащитные свойства и уменьшает впитывание воды.
Влажность
Водопоглощение керамзита колеблется в пределах 8 – 20%. При попадании влаги внутрь материала увлажняются поверхности гранул, которые медленно впитывают жидкость. Постепенно вода попадает внутрь сфер через микроскопические трещины и удерживается внутри. Керамзит накапливает влагу и трудно ее отдает. Увеличивается масса, изменяются характеристики теплопроводности керамзита, снижается прочность.
Сухой керамзит выдерживает до 25 серий заморозки и оттаивания, влажный разрушается от расширения воды при отрицательных температурах. Керамзит защищается гидро- и пароизоляционными пленками от увлажнения.
Виды керамзита в зависимости от размера гранул
Насыпной утеплитель классифицируется по размеру гранул и их форме.
Выделяются разновидности керамзита:
- гравий;
- щебень;
- песок.
Крупнозернистый материал добавляет высоты помещению, обычно теплоизоляционный эффект достигается при толщине подсыпки от 20 до 30 см. Чтобы уменьшить размер слоя можно комбинировать керамзит с минватой, пенопластом, пенополистиролом.
Материал можно сравнивать по маркам на прочность. Различают 13 разновидностей гравия и 11 проб керамзитового щебня. Предел прочности одной марки отличается, например, щебень П100 разрушается при 1,2–1,6 МПа, а гравий аналогичного сорта деформируется при 2–2,5 МПа.
Гравий
Материал состоит из округлых частиц с коркой из расплавленной глины, которые внутри содержат пустоты. Различаются фракции гравия: 5–10, 10–20 и 20–40 мм. В зависимости от плотности в насыпном виде представлено 10 марок утеплителя от М150 до М800. По спецзаказу выпускается гравий марки М900 и М1000.
Гравелистые бетоны с наполнителем из средних и мелких гранул обладают легкостью, не нагружают конструкции и показывают улучшенные теплоизоляционные свойства. Стеновые блоки из керамзитобетона применяются в малоэтажных строениях, они защищают здание от холодного воздуха, имеют хорошую воздухопроницаемость и относятся к экологически чистым категориям.
Щебень
Керамзит этого вида содержит отдельные элементы неправильной угловатой формы с острыми краями и гранями. Крупность фракций определяется аналогично гравию. Из-за формы материал имеет низкую насыпную плотность и применяется для изоляции чердаков, подвалов. Фундаменты и основания изолируются керамзитом от промерзания. В земле устраивается гидроизоляция фольгированным материалом, полиэтиленом, рубероидом, сверху монтируется защита от бытовых и атмосферных паров.
Коэффициент теплопроводности керамзита зависит от крупности щебня, но с увеличением размера повышается толщина требуемого слоя. Поверх подсыпки выполняется цементно-песчаная стяжка (не меньше 4 см) для повышения прочности.
Песок
К этой категории относится керамзит, содержащий в составе мелкие частицы до 5 мм. Материал получается при обжиге остатков от производства щебня или гравия или путем размельчения больших кусков. Песок используется для изоляции внутри помещения вместе с крупными видами или применяется в стяжке пола.
Насыпная теплоизоляция действует эффективнее, чем мелкие гранулы в цементно-песчаной смеси. Влага из раствора впитывается гранулами, и они теряют защитные свойства. Сравнительный анализ стеновых блоков из керамзитового песка и гравия показывает, что первые быстрее проводят тепло, но отличаются повышенной прочностью.
Производственные процессы, влияющие на теплопроводность керамзита
Технология получения керамзита предусматривает процессы для увеличения пористости и получения изолированных замкнутых контуров разного размера. Сырьем служит карьерная глина, разрабатываемая в карьерах открытым способом. Перед использованием проводятся лабораторные испытания образцов на вспучивание, чтобы определить пригодность для производства.
Оборудование включает:
- разрыхлительные станки;
- грануляторы;
- барабаны для сушки;
- вращающиеся тигли для обжига;
- охлаждающие емкости с подачей воздуха;
- транспортеры.
В производстве применяется сухое или влажное сырье различного помола. При температуре +1000 — +1300°С масса вспучивается и поверхность частиц приобретает герметичность за счет спекания.